CCD或CMOS图像传感器的低通效应
2012-03-04
giai
由于CCD或CMOS固体图象传感器是一种离散像素的光电成象器件,根据奈奎斯特定理,一个图象传感器能够分辨的最高空间频率等于它的空间 采样频率的一半,这个频率就称为奈奎斯特极限频率。在用CCD摄像机获取目标图象信息时,当抽样图象超过系统的奈奎斯特极限频率时,在图象传感器上,高频成分将 被反射到基本频带中,造成所谓纹波效应或莫尔效应,使图象产生周期频谱交迭混淆或称为拍频现象。假设CCD的抽样频率为15MHZ,在图象信号为10MHZ时,混叠频率分量为 15MHZ-10MHZ=5MHZ,在图象信号为9MHZ处,混叠频率分量为15MHZ-9MHZ=6MHZ,这两项混叠频率分量经电路低通滤波后都是无法滤掉的,并与有用图像信号一样被输出, 如在所观测的波形中在9MHZ和10MHZ频带处叠加的5MHZ和6MHZ信号成分。在7MHZ信号上有明显的低频差拍存在,差拍频率约1MHZ。这些混叠的信号将影响图象清晰度,甚 至出现彩色条纹干扰。
由于上述现象的存在,电视主持人很少穿着带有条纹的服装,或者说带有条纹的服装,是电视工作者一种非常忌讳的服装。 由于家用小型CCD或CMOS摄像机图像传感器在垂直和水平方向传输光学信息都是离散的取样方式,这是因为它的光敏单元在水平方向也是离散的。根据取样定理可知, 取样后的信号频谱分布和幅度变化为:
(图源线上,侵删)
由于摄像机等固体图象传感器读取影像均采用这种非连续性取象方式,所以在拍摄细条纹(高频)时肯定会产生不必要的干扰杂音。由于细条纹的方向不同, 需用相对应角度的光学低通滤波晶片加以消除,又因为不同型号的CCD摄像机与CMOS图象传感器在规格上有些差异,为针对不同的型号及同时兼顾不同方向所产生的干扰杂音,需用不同 厚度、片数、角度组合的OLPF的设计,以提高取象品质。
因此摄像机的镜头不单是简单的光学成像的作用,还有光学滤波等更为深奥的功能。